Magmatic arc tectonics in northern Chile: implications for coupling and decoupling
between plates, the present crustal thickness, and changes in the level of intrusion
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INTRODUCTION

Tectonic studies carried out in the fossil (Jurassic to Paleogene) arcs of
northern Chile have important implications for the understanding of the
present crustal structures and the deformation processes operating in the
crust. Here three major problems of Andean tectonics are addressed:
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a) Upper-plate tectonics and plate convergence
Is there a direct kinematic response of upper-plate kinematics on plate |
convergence?
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b) Crustal thickness

Is the observed crustal thickness (40-65 km) in the present forearc, which
cannot be explained by the Neogene-Quaternary shortening in the
backarc, a result of cumulative shortening since the Mesozoic or is it due
to other processes as e.g. hydration of the forearc mantle?
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c) Variations in the intrusion level

Geophysical data reveal the presence of melts in the present arc at a
depth of some 20 km making it a weak zone which is very important for the
rheology of the upper plate. Is this melting level constant through time or is
it subject to changes which would result in changes in lithospheric
strength?
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EVOLUTION OF THE CENTRAL ANDES 21-25 °S

Evolution of the Central Andes since 200 Ma in a time/longitude diagram. The
magmatic arc migrated ~200 km eastwards since ~140 Ma. In the kinematic
regime two major periods can be distinguished: general transtension (200-90
Ma) and alternating transpression and transtension since 90 Ma. The change
corresponds to a major plate reorganisation around 90 Ma.
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Upper-plate tectonics and plate convergence

Late Jurassic structures in the Coastal Cordillera
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Structures from all exposed crustal levels of the Jurassic arc indicate a NW-SE-direction of shortening
.Thus, these directions are parallel to the vector of plate convergence. However, late
Jurassic mafic dikes show two different directions of S,,.... An older generation of dikes strikes NE-
SW indication a NE-SW direction of S, . Younger dikes (also late Jurassic) strike NW-SE which

and/or S,

Hmax

agrees with the verctor of plate convergence.

Late Paleogene structures in the Precordillera

During the late Eocene/early Oligocene also reversals occurred along the Precordilleran Fault System.
Movements started around 38 Ma with dextral displacements which are synthetical to the convergence
obliquity. At ~34 Ma a reversal to sinistral movements took place which were antithetical to plate

convergence.
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Tectonic scheme of the Precordillera
near Chuquicamata.

Geological sketch map of the Precordillera
around Calama showing the Precordilleran Fault
System. Segments showing mainly older dextral
displacements are indicated by blue arrows,
segments showing younger, sinistral shearing
are indicated by red arrows.
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Pre-Neogene shortening
INCAIC PHASE (~38 Ma):

- shortening: ~10 km

shortening: ~15 km
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PERUVIAN PHASE (85 Ma):
shortening: ~6 km

100 km

Igneous rocks:
Cretaceous  Late Cretaceous Paleogene
(130-75Ma)  (72-35 Ma)

Neagene-Quaternary.

Pre-Neogene shortening events are restricted to the Cretaceous (Peruvian Phase, ~85
Ma) and the Paleogene (Incaic Phase, ~38 Ma). The total shortening amounts to ~ 15-20
km.Thus, there is only limited pre-Neogene crustal thickening.
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The Pre-Neogene shortening produced a crust that is only slightly thickened. In this figure
the pre-Neogene crust (red) is pojected into the refraction seismic profile which shows
mantle velocities at a depth of 40-65 km beneath the present forearc (Coastal Cordillera to
Precordillera). Low-velocity, aparent crustal material which cannot be explained by pre-
Neogene thickening is indicated in yellow. As late Cenozoic shortening in the backarc cannot
account for the thick crust in the forearc it is suggested that the material between mantle
velocities and the true crustis hydrated mantle material.

Variations in the intrusion level
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The Jurassic-early Cretaceous evolution shows that
volcanism clearly dominate over plutonism over most of the
lifetime of the magmatic arc (220-160 Ma). Maximimum
intrusive activity occurred after volcanism had ceased. Most of
these plutons were emplaced at shallow crustal levels. The
peak in plutonism is accompanied by strong deformations
(e.g. Atacama Fault Zone). It is important to note that
deformations concentrated on the weak magmatic arc
whereas the backarc remained undeformed. (Stratigraphy
afterv. Hillebrandtetal.)
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Rising velocities of magma diapirs (viscous, strain-rate-
softening) for two different thermal states of the crust ("hot"
crust: red, "cold" crust: blue, temperatures are shown on the
right side; velocities are calculated for diapirs with a diameters
of 5 and 10 km; the compostion of the crust is indicated by
granodiorite, gabbro and pyroxene). In a cold crust (=early
stage of the arc) diapirs can rise only to a depth of 30-20 km.
By contrast, in the hot crust diapirs can rise to levels <<10 km
(Calculations by Roberto Weinberg, pers.comm.1996).

Model of shallowing of the intrusion level

In this model it is suggested that the arc's crust is
progresively heated and weakened by arising of the intrusion
level. Heating and weakening leads to deformations in the
final stage of an arc - even if the stress level remains constant
over the lifetime of the arc (lateral stress indicated by S,,).

Early stage (a): Volcanism dominates over plutonism;
volcanoes are fed from magma reservoirs at the base of the
crust. The crust is relatively cold and there is little
deformation.

Middle stage (b) : Volcanism has stopped. Due to heating of
the crust the intrusion level has risen to mid-crustal levels.
The crust becomes weakened and first shear zones develop.

Late stage (c) : The shallowing of the intrusion level leads to
further heating of the crust. Magmas rise along fractures to
form huge shallow-seated plutons which in turn further
weaken the crust; this weakening leads to a catastrophic
failure and the observed strong deformations of the
magmatic arc.
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EVOLUTION OF THE CENTRAL ANDES 21-25 °S
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Evolution of the Central Andes since 200 Ma in a time/longitude diagram. The
magmatic arc migrated ~200 km eastwards since ~140 Ma. In the kinematic
regime two major periods can be distinguished: general transtension (200-90
Ma) and alternating transpression and transtension since 90 Ma. The change
corresponds to a major plate reorganisation around 90 Ma.
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The Jurassic-early Cretaceous evolution shows that
volcanism clearly dominate over plutonism over most of the
lifetime of the magmatic arc (220-160 Ma). Maximimum
Intrusive activity occurred after volcanism had ceased. Most of
these plutons were emplaced at shallow crustal levels. The
peak in plutonism is accompanied by strong deformations
(e.g. Atacama Fault Zone). It is important to note that
deformations concentrated on the weak magmatic arc
whereas the backarc remained undeformed. (Stratigraphy
after v. Hillebrandtetal.)




