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Tectonic setting:
The structural style of the Chilean Precordillera between 21,5-23°S reveals strong differences parallel and
perpendicular to the roughly N-S oriented trend of the Upper Cretaceous-Paleogene magmatic arc seated
in the Precordillera, therefore allowing a seperation of the study area into a nothern and a southern seg-
ment: North of ~22,5° S (lat. of Calama) strong Upper Eocene (Incaic) contractional-transpressional tec-
tonics are exposed wich caused the reverse faulting of basement-blocks both to the east and west onto
folded Mesozoic and Cenozoic strata  ( ). Incaic contraction is less developed in the region
south of Calama, where only moderate folding in Jurassic sediments and a slightly tilting of Eocene
volcanics can be observed. Incaic contraction was preceeded by strong tensional tectonics prior to arc-
emplacement in the northern segment as indicated by the formation of intramontane basins and the depo-
sition of continental clastics without magmatic intercalations at the Upper Cretaceous-Paleogene bounda-
ry. This time-span in the southern segment was, in turn, already characterised by arc-volcanism wich mi-
grated into the northern segment in Eocene times, where it was concentrated in a narrower zone.

Figs 1 and 2

Deformation history:
The timing of structural evolution could be seperated in four phases, where the latter three roughly coin-
cide with the cenozoic development of the andine convergence system .(Fig. 3)

-Formation of crustal inhomogeneties due to Permian graben-setting (  )
-Origin of mayor fault-zones (  )
-First exhumation of the basement of Sierra de Moreno

1
2

-Extensional fabrics and paleostress-reconstructions evidence different
tensional tectonic regimes from Lower Cretaceous times on ( )
-Horst-and-graben topography in northern segment could be inferred
from intramontane-basin evolution

Fig.1

-Strain-partitioning from arc-normal contraction in the W to arc-parallel
transpression in the E of northern segment as deduced from analyses
of contractional fabrics and paleostress-reconstructions ( )
-Contraction at backarc-boundary in southern segment (  )
-N-S strain-transfer due to dextral ENE strike-slip at lat. 22,5°S

Fig.1
3

-Decreasing covergence at ~33Ma causes decoupling of upper and
lower plate and inversion of the local stressfield in the area of the
Westfissure wich changed in movement-sense from dextral to sinistral (  )4

Preandean development:

Preincaic rifting:

Incaic contraction/
transpression:

Postincaic reversal:

Conclusions:
The heterogenities in the structural setting of the Precordillera in the studied area are mainly caused by
strong tensional tectonics wich affected the northern segment before the onset of arc-volcanism and wich
are interpreted according to the NW-propagation of the Salta-rift during the Upper Cretaceous. Incaic shor-

tening was restricted to the relatively narrow zone of the magmatic arc in the northern segment, wheras it
was transferred to the backarc-transition in the southern segment ( ). This strain-transfer might have
been facilitated by the presence of a dense body in the upper crust in the SE-part of the studied area, ac-
ting as a mechanical “free-face”. Incaic shortening  in the northern segment concentrated with depht into
the central zone of the magmatic arc wich acts as a subvertical zone of crustal weakness, where ductile de-
formation occured at very shallow crustal levels (~7km). The bulk transpressive deformation-field was par-
titioned into arc-normal contraction in the W  and arc-parallel transpression in the central zone of the arc
and caused the oblique inversion of the former half-graben setting ( ). The resulting structural geometry
of the Precordillera thus appears like an assymetric positive flower-structure. South of 22,5°S FTB-like
tectonics developed at the backarc-boundary. N-S-variations at ~22,5°S are still present in today´s struc-
tural setting of the Central Andes and are expressed by the differences between Altiplano and Puna (  ).
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Figure 1: Geological map of the studied area with normalised paleostress-ellipsoids and stereographic
plots of fold axes (density distribution diagrams) and volcanic dikes (orientation roses). Reduced paleo-
stress tensors were derived from fault-stria data-pairs using the direct inversion method of ( . Also plotted:
Selected radiometric age datings of magmatic rocks (own K/Ar, Ar/Ar after   ) and isolines of the Central
Andes residual gravity field according to ( .
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Figure 2: Geological cross-sections through the studied area (for legend and location: Fig.1)

Figure 3: Timing of Incaic deformation events related to the evolution of plate-convergence at he South
American continental margin. Gray lines: reconstructions after ( , black lines: Obliquity and half-spreading
rates of the Pacific-Farallon (Nazca)-rise after ( . Note that increasing of sea-floor spreading occured
significantly later than the increasing of the convergence rate after the reconstructions of ( .
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Figure 4: From  extension to contraction: Conceptual forward-modelling of Incaic structures in the northen
segment. The resulting asymmetric bivergent structural setting probably orginated due to the oblique inver-
sion of a former down-stepping half-graben structure. Staircase up-stepping of Incaic reverse-faults cau-
sed the progressive monoclinal flexuring of the western flanks of the paleo-horsts. Modelling was carried
out under plane-strain assumptions using the “fault-parallel flow” algorithm of  the “2dmove”-sofware-pack-
age of Midland Valley Corporation.

Figure  5: Schematic structural evolution of  the precordillera in the studied area with regard to the differences in the structural setting N and S of
22,5°S. Left mapview, right cross-section view, respectively.
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